CHEMICAL KINETICS

Different Rates of a Reactions (mol L-1 s-1)

Rate of a reaction $\propto \frac{\text{Change in concentration of species}}{\text{Time}}$

For a reaction, $mA + nB \rightarrow pC + qD$

$$\frac{-1}{m}\frac{d[A]}{dt} = \frac{-1}{n}\frac{d[B]}{dt} = \frac{+1}{p}\frac{d[C]}{dt} = \frac{+1}{q}\frac{d[D]}{dt}$$

- Reactant R, Decreases with time
- Product P, Increases with time

Factors Influencing Rate of a Reaction

- For every 10° rise in Temperature, rate becomes 2x
- · Catalyst increases the rate without getting involved
- Greater Surface Area of reactant, faster the reaction
- Light (hv) increases the rate in some cases.

39

Rate Law and Rate Constant

For a reaction, $mA + nB \rightarrow pC + qD$

Rate $\propto [A]^x[B]^y \implies \text{Rate} = k[A]^x[B]^y$

k depends on Temperature

k in independent of concⁿ

k defines speed of the reaction, Large k - fast reaction

Order of the reaction = x + y = m + n (for elementary rxn)

- Order is calculated experimentally
- It can be Zero, Positive or Fraction.
- For a multistep reaction, order is not equal to sum of stoichiometry, it is calculated using slowest step of reaction. Order = x + y

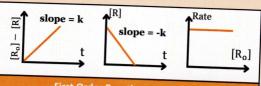
Molecularity = No. of Particles participating in reaction

- Molecularity ranges between 1 to 3. NEVER 0.
- For a single step reaction, Molecularity = Order.

Integrated Rate laws & Graphs

Zero Order Reaction, Units: mol L-1 s-1

Differential Rate Law	-d[R]/dt = k
Integrated Rate Law	$kt = [R_o] - [R]$


Example: Adsorption of gases on metal surface at high P.

[R₀] = a (initial conc.); [R] = a-x (Conc. after t)

40

First Order Reaction, Units: s-1

- Differential Rate Law
- -d[R]/dt = k[R]
- Integrated Rate Law

$$kt = 2.303 \log {\binom{[R_o]}{[R]}}$$

Examples

- Hydrolysis of aspirin.
- Reaction of t-butyl bromide with water

Pseudo First order reactions

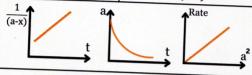
Reactions which are second order but tend to behave as first order reactions. e.g. Hydrolysis of Ester in acid

$$CH_3COOC_2H_5(aq.) + H_2O(1) \xrightarrow{H^+} CH_3COOH(aq.) + C_2H_5OH(aq.)$$

Rate =
$$k[CH_3COOC_2H_5][H_2O]$$

Rate = $k'[CH_3COOC_2H_5]$

Second Order Reaction, Units: mol-1 L s-1


Differential Rate Law $-d[R]/dt = k[R]^2$

Integrated Rate Law (two cases)

Case I: One reactant or two reactants with same conc.

$$A + B \rightarrow Products$$

 $2A \rightarrow Products$

$$kt = \frac{1}{(a-x)} \cdot \frac{1}{a}$$

Case II: Two reactants with different conc.

$$A + B \rightarrow Products$$
a b

$$kt = \frac{2.303}{(a-b)} log \frac{b(a-x)}{a(b-x)}$$

General nth order terms

	• Units	(mol L ⁻¹) ¹⁻ⁿ (time) ⁻¹	
	• Integrated Rate Law (15%)	$kt = \frac{1}{n-1} \left(\frac{1}{[R]^{n-1}} - \frac{1}{[R_o]^{n-1}} \right)$	
I	• Halftita	1 [2 ⁿ⁻¹ -1]	

$$t_{1/2} = \frac{1}{k(n-1)} \left[\frac{2^{n-1}}{a^{n-1}} \right]$$

Half life and relations First Order

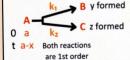
	Zero Order	
: :		$[R_o]$
	t ₁ =	2k

$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

Second Order
$$t_{\frac{1}{2}} = \frac{1}{k[R_0]}$$

Important Relations

$$t_{75\%} = 2 t_{1/2}$$


$$t_{99.9\%} = 10 t_{1/2}$$

Substance left after n half lives

$$[R_o]/2^r$$

Types of Elementary reactions

Parallel/Side/Concurrent Reaction

$$\begin{aligned} k_{\text{overall}} &= k_1 + k_2 \\ &\text{The ratio is} \\ &\text{used in a lot of} \\ &\text{questions} \end{aligned} \frac{[B]_t}{[C]_t} = \frac{k_1}{k_2}$$

$$[B]_t = A_0 (1 - e^{-(k_1 + k_2)t}) \frac{k_1}{k_1 + k_2}$$

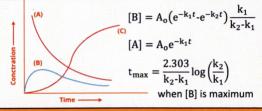
$$[C]_t = A_o (1 - e^{-(k_1 + k_2)t}) \frac{k_2}{k_1 + k_2}$$

$$A_t = A_0 e^{-(k_1 + k_2)t}$$

e.g. α or β -D-Glucose

formed from D-Glucose

aldehyde form 43

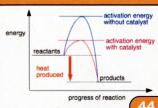

Opposed or Reversible reactions

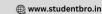
$$R(f) = k_1 (a-x)$$

 $R(b) = k_2 x$
net rate : $k_1(a-x) - k_2 x$

Consecutive or sequential reactions

$$\begin{array}{ccc}
A & \xrightarrow{k_1} & B & (Step 1) \\
B & \xrightarrow{k_2} & C & (Step 2)
\end{array}$$


- B is an intermediate.
- According to SSA, reactive intermediates are at constant conc.

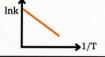

Effect of Catalyst on rate

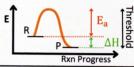
A catalyst provides an alternative route for a reaction with a lower activation energy.

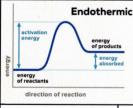
Thus, Speeds up reaction

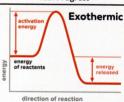
Temperature Dependence of rate of reaction

Arrhenius eqn: Relates Temperature with rate constant.

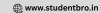

$$k = Ae^{-E_a/RT}$$


- E_a = Activation Energy
 - A = Frequency factor


 $lnk = lnA - \frac{E_a}{RT}$


Plot vs lnk vs 1/T

Slope:-Ea/R Intercept:InA


For a a reaction at two different temperatures

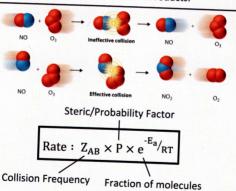
$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Temperature Coefficient

Rate constant doubles or triples with every 10° rise in temperature

$$\frac{k_t + 10}{k_t} \approx 2$$

Some examples of first order rate constants


Gas phase reactions A (g) \rightarrow B(g) + C (g)

Partial pressure of A given Initially, Po and at t, Pt	$k = 2.303 \log \frac{P_0}{P_0}$
Total pressure given	D.

Initially, P_o and at t, P_t $k = 2.303 \log \frac{P_o}{2P_o - P_t}$

Collision theory

- The rate of a chemical reaction is proportional to the number of collisions between reactant molecules.
- Only Effective collision results in Products.

having Energy>Activation

